This work cites the following items of the Benford Online Bibliography:
ACL Services Ltd. (2012). About Benford analysis. Software documentation website (last retrieved 24Jan2014). | ||||
Albrecht, CC (2008). Fraud and forensic accounting in a digital environment. White Paper for The Institute for Fraud Prevention, Brigham Young University. | ||||
Albrecht, WS and Albrecht, CC (2002). Root out financial deception. Journal of Accountancy 193(4), pp. 30-34. ISSN/ISBN:0021-8448. | ||||
Aldous, D and Phan, T (2010). When Can One Test an Explanation? Compare and Contrast Benford's Law and the Fuzzy CLT. The American Statistician 64(3), pp. 221–227. ISSN/ISBN:0003-1305. DOI:10.1198/tast.2010.09098. | ||||
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572. | ||||
Berger, A and Hill, TP (2011). Benford's Law Strikes Back: No Simple Explanation in Sight for Mathematical Gem. The Mathematical Intelligencer 33(1), pp. 85-91. DOI:10.1007/ s00283-010-9182-3. | ||||
Berger, A and Hill, TP (2011). A basic theory of Benford's Law . Probability Surveys 8, pp. 1-126. DOI:10.1214/11-PS175. | ||||
Berton, L (1995). He’s Got Their Number: Scholar Uses Math to Foil Financial Fraud. The Wall Street Journal, p. B1, July 10. | ||||
Bhattacharya, S, Kumar, K and Smarandache, F (2005). Conditional probability of actually detecting a financial fraud – a neutrosophic extension to Benford’s law. International Journal of Applied Mathematics 17(1), pp. 7-14. | ||||
Buyse, M, George, SL, Evans, S, Geller, NL, Edler, L and Hutton, J (1999). The Role of Biostatistics in the Prevention, Detection and Treatment of Fraud in Clinical Trials. Statistics in Medicine 18 (24), pp. 3435-3451. ISSN/ISBN:0277-6715. DOI:10.1002/(SICI)1097-0258(19991230)18:24<3435::AID-SIM365>3.0.CO;2-O. | ||||
Cho, WKT and Gaines, BJ (2007). Breaking the (Benford) law: Statistical fraud detection in campaign finance. American Statistician 61(3), pp. 218-223. ISSN/ISBN:0003-1305. DOI:10.1198/000313007X223496. | ||||
Deckert, J, Myagkov, M and Ordeshook, PC (2011). Benford's Law and the Detection of Election Fraud. Political Analysis 19(3), pp. 245-268. DOI:10.1093/pan/mpr014. | ||||
Durtschi, C, Hillison, W and Pacini, C (2004). The effective use of Benford’s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting 1524-5586/Vol. V, pp. 17-34. | ||||
Fewster, RM (2009). A Simple Explanation of Benford's Law. American Statistician 63(1), pp. 26-32. DOI:10.1198/tast.2009.0005. | ||||
Gauvrit, N and Delahaye, J-P (2009). Loi de Benford générale (General Benford Law). Mathématiques et sciences humaines/ Mathematics and Social Sciences 186, pp. 5–15. FRE | ||||
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237. | ||||
Hill, TP (1998). The First-Digit Phenomenon. American Scientist 86 (4), pp. 358-363. ISSN/ISBN:0003-0996. DOI:10.1511/1998.4.358. | ||||
Jamain, A (2001). Benford’s Law. Master Thesis. Imperial College of London and ENSIMAG. | ||||
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148. | ||||
Nigrini, MJ (1999). I’ve got your number. Journal of Accountancy 187(5), pp. 79-83. | ||||
Nigrini, MJ and Miller, SJ (2009). Data Diagnostics Using Second-Order Tests of Benford's Law. Auditing: A Journal of Practice & Theory 28(2), pp. 305-324. DOI:10.2308/aud.2009.28.2.305 . | ||||
Rodriguez, RJ (2004). First Significant Digit Patterns from Mixtures of Uniform Distributions. American Statistician 58(1), pp. 64-71. ISSN/ISBN:0003-1305. DOI:10.1198/0003130042782. | ||||
Scott, PD and Fasli, M (2001). Benford’s law: an empirical investigation and a novel explanation. CSM Technical Report 349, Department of Computer Science, University of Essex, UK. |