Adhikari, AK and Sarkar, BP (1968). Distribution of most significant digit in certain functions whose arguments are random variables. Sankhya-The Indian Journal of Statistics Series B, no. 30, pp. 47-58. ISSN/ISBN:0581-5738.
|
|
|
|
|
Beer, TW (2009). Terminal digit preference: beware of Benford's law. Journal of Clinical Pathology 62(2), p. 192. DOI:10.1136/jcp.2008.061721.
|
|
|
|
|
Benford, F (1938). The law of anomalous numbers. Proceedings of the American Philosophical Society, Vol. 78, No. 4 (Mar. 31, 1938), pp. 551-572.
|
|
|
|
|
Browne, MW (1998). Following Benford’s law, or looking out for no. 1. The New York Times, August 4, 1998.
|
|
|
|
|
Diekmann, A (2007). Not the First Digit! Using Benford's Law to Detect Fraudulent Scientific Data. Journal of Applied Statistics 34(3), pp. 321-329. ISSN/ISBN:0266-4763. DOI:10.1080/02664760601004940.
|
|
|
|
|
Dümbgen, L and Leuenberger, C (2008). Explicit Bounds for the Approximation Error in Benford’s Law. Electronic Communications in Probability 13, pp. 99-112. ISSN/ISBN:1083-589X. DOI:10.1214/ECP.v13-1358.
|
|
|
|
|
El Sehity, T, Hoelzl, E and Kirchler, E (2005). Price developments after a nominal shock: Benford's Law and psychological pricing after the euro introduction. International Journal of Research in Marketing 22(4), pp. 471-480. ISSN/ISBN:0167-8116. DOI:10.1016/j.ijresmar.2005.09.002.
|
|
|
|
|
Engel, HA and Leuenberger, C (2003). Benford's law for exponential random variables. Statistics & Probability Letters 63, pp. 361-365. ISSN/ISBN:0167-7152.
|
|
|
|
|
Furry, WH and Hurwitz, H (1945). Distribution of numbers and distribution of significant figures. Nature 155(3924), pp. 52-53. DOI:doi:10.1038/155052a0.
|
|
|
|
|
Giles, DE (2007). Benford's law and naturally occurring prices in certain eBay auctions. Applied Economics Letters 14(3), pp. 157-161. ISSN/ISBN:1350-4851. DOI:10.1080/13504850500425667.
|
|
|
|
|
Gottwald, GA and Nicol, M (2002). On the nature of Benford’s law. Physica A: Statistical Mechanics and its Applications 303(3-4), 387-396.
|
|
|
|
|
Hales, DN, Sridharan, V, Radhakrishnan, A, Chakravorty, SS and Sihad, SM (2008). Testing the accuracy of employee-reported data: An inexpensive alternative approach to traditional methods. European Journal of Operational Research 189(3), pp. 583-593.
|
|
|
|
|
Hill, TP (1995). The Significant-Digit Phenomenon. American Mathematical Monthly 102(4), pp. 322-327. DOI:10.2307/2974952.
|
|
|
|
|
Hill, TP (1995). A Statistical Derivation of the Significant-Digit Law. Statistical Science 10(4), pp. 354-363. ISSN/ISBN:0883-4237.
|
|
|
|
|
Hill, TP (1995). Base-Invariance Implies Benford's Law. Proceedings of the American Mathematical Society 123(3), pp. 887-895. ISSN/ISBN:0002-9939. DOI:10.2307/2160815.
|
|
|
|
|
Hill, TP (1998). The First-Digit Phenomenon. American Scientist 86 (4), pp. 358-363. ISSN/ISBN:0003-0996. DOI:10.1511/1998.4.358.
|
|
|
|
|
Hürlimann, W (2006). Benford's Law from 1881 to 2006: A Bibliography. posted on math arXiv July 6, 2006; last accessed February 28, 2016.
|
|
|
|
|
Irmay, S (1997). The relationship between Zipf's law and the distribution of first digits. Journal of Applied Statistics 24(4), pp. 383-393. ISSN/ISBN:0266-4763. DOI:10.1080/02664769723594.
|
|
|
|
|
Janvresse, E and de la Rue, T (2004). From Uniform Distributions to Benford’s Law. Journal of Applied Probability 41(4), pp. 1203-1210. ISSN/ISBN:0021-9002.
|
|
|
|
|
Judge, G and Schechter, L (2009). Detecting problems in survey data using Benford’s law. J. Human Resources 44, pp. 1-24. DOI:10.3368/jhr.44.1.1.
|
|
|
|
|
Knuth, DE (1997). The Art of Computer Programming. pp. 253-264, vol. 2, 3rd ed, Addison-Wesley, Reading, MA.
|
|
|
|
|
Leemis, LM, Schmeiser, BW and Evans, DL (2000). Survival Distributions Satisfying Benford's Law. American Statistician 54(4), pp. 236-241. ISSN/ISBN:0003-1305. DOI:10.2307/2685773.
|
|
|
|
|
Ley, E (1996). On the Peculiar Distribution of the US Stock Indexes' Digits. American Statistician 50(4), pp. 311-313. ISSN/ISBN:0003-1305. DOI:10.1080/00031305.1996.10473558.
|
|
|
|
|
Lolbert, T (2008). On the non-existence of a general Benford's law. Mathematical Social Sciences 55(2), pp. 103-106. ISSN/ISBN:0165-4896. DOI:10.1016/j.mathsocsci.2007.09.001.
|
|
|
|
|
Luque, B and Lacasa, L (2009). The first-digit frequencies of prime numbers and Riemann zeta zeros. Proc. Royal Soc. A, published online 22Apr09. DOI:10.1098/rspa.2009.0126.
|
|
|
|
|
Miller, SJ and Nigrini, MJ (2008). Order Statistics and Benford's Law. International Journal of Mathematics and Mathematical Sciences, Art. ID 382948. ISSN/ISBN:0161-1712. DOI:10.1155/2008/382948.
|
|
|
|
|
Newcomb, S (1881). Note on the frequency of use of the different digits in natural numbers. American Journal of Mathematics 4(1), pp. 39-40. ISSN/ISBN:0002-9327. DOI:10.2307/2369148.
|
|
|
|
|
Nigrini, MJ (2000). Digital Analysis Using Benford's Law: Tests and Statistics for Auditors. Global Audit Publications: Vancouver, Canada. DOI:10.1201/1079/43266.28.9.20010301/30389.4.
|
|
|
|
|
Pietronero, L, Tosatti, E, Tosatti, V and Vespignani, A (2001). Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. Physica A - Statistical Mechanics and its Applications 293(1-2), 297-304. ISSN/ISBN:0378-4371. DOI:10.1016/S0378-4371(00)00633-6.
|
|
|
|
|
Pinkham, RS (1961). On the Distribution of First Significant Digits. Annals of Mathematical Statistics 32(4), pp. 1223-1230. ISSN/ISBN:0003-4851.
|
|
|
|
|
Raimi, RA (1976). The First Digit Problem. American Mathematical Monthly 83(7), pp. 521-538. ISSN/ISBN:0002-9890. DOI:10.2307/2319349.
|
|
|
|
|
Rodriguez, RJ (2004). First Significant Digit Patterns from Mixtures of Uniform Distributions. American Statistician 58(1), pp. 64-71. ISSN/ISBN:0003-1305. DOI:10.1198/0003130042782.
|
|
|
|
|
Schatte, P (1998). On Benford's law to variable base. Statistics & Probability Letters 37(4): 391-397. ISSN/ISBN:0167-7152. DOI:10.1016/S0167-7152(97)00142-9.
|
|
|
|
|
Torres, J, Fernandez, S, Gamero, A and Sola, A (2007). How do numbers begin? (The first digit law). European Journal of Physics 28(3), L17-L25. ISSN/ISBN:0143-0807. DOI:10.1088/0143-0807/28/3/N04.
|
|
|
|
|