Fairthorne, RA (1969). Progress in Documentation - Empirical Hyperbolic Distributions (Bradford-Zipf-Mandelbrot) for Bibliometric Description and Prediction. Journal of Documentation 25(4), pp. 319-343; reprinted 2005 in Journal of Documentation 61(2), pp. 171-193. ISSN/ISBN:0022-0418. DOI:10.1108/00220410510585179.
|
|
|
|
|
Fairweather, WR (2017). Sensitivity and Specificity in the Application of Benford’s Law to Explore for Potential Fraud. Journal of Forensic & Investigative Accounting 9(3), Special Issue, pp. 953-961.
|
|
|
|
|
Falcão, CSS (2014). A lei Benford para a distribuição dos primeiros dígitos. TCC (graduação) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Curso de Matemática.
POR
|
|
|
|
|
Falk, BH, Tsoulalas, G and Zhang, N (2023). Crypto Wash Trading: Direct vs. Indirect Estimation. Preprint arXiv:2311.18717 [econ.GN]; last accessed January 4, 2024.
|
|
|
|
|
Fallico, D (2023). Searching Applications of Benford’s Law to Investigate Beam Jitter. Presentation for Teacher Research Associate
(TRAC) Program at Fermilab.
|
|
|
|
|
Fang, G (2022). Investigating Hill’s question for some probability distributions. AIP Advances 12, 095004. DOI:10.1063/5.0100429.
|
|
|
|
|
Fang, G and Chen, Q (2019). Several common probability distributions obey Benford’s law. Physica A: Statistical Mechanics and its Applications, 123129
. DOI:10.1016/j.physa.2019.123129.
|
|
|
|
|
Fang, X, Miller, SJ, Sun, M and Verga, A (2023). Generalized Continuous and Discrete Stick Fragmentation and Benford’s Law. Preprint arXiv:2309.00766 [math.PR]; last accessed September 12, 2023.
|
|
|
|
|
Fang, X, Miller, SJ, Sun, M and Verga, A (2024). Benford’s Law and Random Integer Decomposition with Congruence Stopping Condition. Preprint.
|
|
|
|
|
Farbaniec, M, Grabiński, T, Zabłocki, B and Zając, W (2011). Application of the first digit law in credibility evaluation of the financial accounting data based on particular cases. Presentation for 10th International Congress on Internal Control, Internal Audit, Fraud and Anti-Corruption Issues, Kraków, September 14-16, 2011.
|
|
|
|
|
Farhadi, N (2021). Can we rely on COVID-19 data? An assessment of data from over 200 countries worldwide. Science Progress 104(2). DOI:10.1177/00368504211021232.
|
|
|
|
|
Farhadi, N and Lahooti, H (2021). Are COVID-19 Data Reliable? A Quantitative Analysis of Pandemic Data from 182 Countries. COVID 1, pp. 137–152. DOI:10.3390/covid1010013.
|
|
|
|
|
Farhadi, N and Lahooti, H (2021). Pandemic Growth and Benfordness: Empirical Evidence from 176 Countries Worldwide. COVID 1(1), pp. 366-383. DOI:10.3390/covid1010031.
|
|
|
|
|
Farhadi, N and Lahooti, H (2022). Forensic Analysis of COVID-19 Data from 198 Countries Two Years after the Pandemic Outbreak. COVID 2(4), pp. 472-484. DOI:10.3390/covid2040034.
|
|
|
|
|
Farhadi, N and Lahooti, H (2022). In Data We Trust: Proving Market Manipulation on the Tehran Stock Exchange. International Journal of Business and Management 17(4). DOI:10.5539/ijbm.v17n4p1.
|
|
|
|
|
Farkas, J and Gyürky, G (2010). The significance of using the Newcomb-Benford law as a test of nuclear half-life calculations. Acta Physica Polonica B 41(6), pp. 1213-1221. ISSN/ISBN:PL 0587-4254.
|
|
|
|
|
Farnsworth, DF, Horan, KK and Galgon, RM (2007). A guide to Benford's law. Mathematics and Computer Education 41(3), pp. 230-243. ISSN/ISBN:0730-8639.
|
|
|
|
|
Farris, M, Luntzlara, N, Miller, SJ, Shao, L and Wang, M (2021). Recurrence Relations and Benford's Law. Statistical Methods & Applications 30, pp. 797–817. DOI:10.1007/s10260-020-00547-1.
|
|
|
|
|
Farris, M, Luntzlara, N, Miller, SJ, Zhao, L and Wang, M (2019). Recurrence Relations and Benford’s Law. Preprint arXiv:1911.09238 [math.PR]; last accessed December 8, 2019.
|
|
|
|
|
Favaretto, F (2007). Verificacao da qualidade de dados atraves da lei de Benford. Proceedings of XXVII Brazilian National Conference on Engineering, October 2007.
|
|
|
|
|
Feldstein, A and Goodman, R (1976). Convergence Estimates for Distribution of Trailing Digits. Journal of the Association for Computing Machinery 23(2), pp. 287-297. ISSN/ISBN:0004-5411. DOI:10.1145/321941.321948.
|
|
|
|
|
Feldstein, A and Turner, P (1986). Overflow, Underflow, and Severe Loss of Significance in Floating-Point Addition and Subtraction. IMA Journal of Numerical Analysis 6, pp. 241-251. DOI:10.1093/imanum/6.2.241.
|
|
|
|
|
Feldstein, A and Turner, PR (1996). Overflow and underflow in multiplication and division. Applied Numerical Mathematics 21(3), pp. 221-239. ISSN/ISBN:0168-9274. DOI:10.1016/0168-9274(96)00010-4.
|
|
|
|
|
Feldstein, A and Turner, PR (2006). Gradual and tapered overflow and underflow: A functional differential equation and its approximation. Applied Numerical Mathematics 56(3-4), pp. 517-532. ISSN/ISBN:0168-9274. DOI:10.1016/j.apnum.2005.04.018.
|
|
|
|
|
Feller, W (1971). An Introduction to Probability Theory and Its Applications. 2nd ed., J. Wiley (see p 63, vol 2).
|
|
|
|
|
Fellman, J (2014). The Benford paradox. Journal of statistical and econometric methods 3(4), pp. 1-20. ISSN/ISBN:2241-0384 .
|
|
|
|
|
Fellman, J (2016). En statistisk paradox. Quintensen No.2, pp. 15-17.
SWE
|
|
|
|
|
Fellman, J (2017). Benfordparadoxen. Arkhimedes 2017(4), pp. 26-33.
SWE
|
|
|
|
|
Fernandes, P and Antunes, M (2023). Benford’s law applied to digital forensic analysis. Forensic Science International: Digital Investigation 45, p. 301515. DOI:10.1016/J.FSIDI.2023.301515.
|
|
|
|
|
Fernandes, P, Ó Ciardhuáin, S and Antunes, M (2024). Uncovering Manipulated Files Using Mathematical Natural Laws. In: Vasconcelos, V., Domingues, I., Paredes, S. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2023. Lecture Notes in Computer Science, vol 14469. Springer, Cham
. DOI:10.1007/978-3-031-49018-7_4.
|
|
|
|
|
Fernández-Gracia, J and Lacasa, L (2018). Bipartisanship Breakdown, Functional Networks, and Forensic Analysis in Spanish 2015 and 2016 National Elections. Complexity 2018, Article ID 9684749. DOI:10.1155/2018/9684749.
|
|
|
|
|
Ferreira, KB and Levy, S (2022). Characterizing Memory Failures Using Benford's Law. Proceedings of Euro-Par 2021: Parallel Processing Workshops. Lecture Notes in Computer Science, vol 13098. Springer, Cham. DOI:10.1007/978-3-031-06156-1_25.
|
|
|
|
|
Ferreira, KB and Levy, S (2023). Using Benford's Law to Identify Unusual Failure Regions. Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, pp. 516–519 . DOI:10.1145/3624062.3624121.
|
|
|
|
|
Ferreira, MJM (2013). Lei de Benford e detecção de fraude contabilística – Aplicação à indústria transformadora em Portugal. TRABALHO FINAL DE MESTRADO, Instituto Superior de Economia e Gestão, Universidade Técnica de Lisboa, Portugal.
POR
|
|
|
|
|
Ferrero, JM, Ballesteros, BC and Milani Filho, MAF (2015). The link between earnings management and digital pattern. Revista de Administração, Contabilidade e Economia, 14(1), pp. 351-382. DOI:10.18593/race.v14i1.4065 .
|
|
|
|
|
Fewster, RM (2009). A Simple Explanation of Benford's Law. American Statistician 63(1), pp. 26-32. DOI:10.1198/tast.2009.0005.
|
|
|
|
|
Filho, DF, Silva, L and Carvalhoa, E (2022). The forensics of fraud: Evidence from the 2018 Brazilian presidential election. Forensic Science International: Synergy, p. 100286. ISSN/ISBN:2589-871X. DOI:10.1016/j.fsisyn.2022.100286.
|
|
|
|
|
Filho, DF, Silva, L and Medeiros, H (2022). “Won’t get fooled again”: statistical fault detection in COVID-19 Latin American data. Globalization and Health 18, pp.105. DOI:10.1186/s12992-022-00899-1.
|
|
|
|
|
Filho, MAFM (2013). A Confiabilidade dos Dados Financeiros de Hospitais Filantrópicos Canadenses: Um Estudo Empírico Baseado na Lei de Benford
[The reliability of financial information of charitable organizations: an exploratory study based on the Benford’s Law]. Sociedade, Contabilidade e Gestão 8(2), pp. 47-63.
POR
|
|
|
|
|
Filho, MAFM, Poker, JH, Belli, MM and Segura, LC (2016). Bolsas de Valores dos BRICS: Uma Análise das Informações Financeiras Baseada na Lei de Benford [BRICS Stock Exchanges: An Analysis of Financial Information Based on Benford's Law]. Revista Contabilidade Vista e Revista, Universidade Federal de Minas Gerais, 64 Belo Horizonte 27(2), mai/ago. ISSN/ISBN: 0103-734X.
POR
|
|
|
|
|
Filho, RNA (2016). Fraude em licitações e a Lei de Benford – aplicação em perícias de engenharia civil do DPF. In: Seminário de Perícias de Engenharia da Polícia Federal 8, Maceió.
POR
|
|
|
|
|
Filho, TMR, Mendes, JFF, Lucio, ML and Moret, MA (2022). Reliability of COVID-19 data and government policies. Preprint arXiv:2208.11226 [physics.soc-ph]; last accessed August 31, 2022.
|
|
|
|
|
Filho, TMR, Mendes, JFF, Lucio, ML and Moret, MA (2023). COVID-19 data, mitigation policies and Newcomb–Benford law. Chaos, Solitons and Fractals 174 p. 113814. DOI:10.1016/j.chaos.2023.113814.
|
|
|
|
|
Filipponi, P (1994). Fn and Ln cannot have the same initial digit. Pi Mu Epsilon Journal 10.1, pp. 5-6.
|
|
|
|
|
Filipponi, P and Menicocci, R (1995). Some Probabilistic Aspects of the Terminal Digits of Fibonacci Numbers. Fibonacci Quarterly 33(4), pp. 325-331. ISSN/ISBN:0015-0517.
|
|
|
|
|
Finch, S (2011). Newcomb-Benford Law. Online publication - last accessed July 16, 2018.
|
|
|
|
|
Fisher, AM and Zhang, X (2023). Uniform distribution mod 1 for sequences of ergodic sums and continued fractions. Preprint arXiv:2307.14843 [math.DS]; last accessed August 5, 2023
.
|
|
|
|
|
Fisher, D (2014). The Simple Mathematical Law That Financial Fraudsters Can't Beat. Forbes.com, May 30.
|
|
|
|
|
Fisher, L (2009). The Perfect Swarm: The Science of Complexity in Everyday Life. Basic Books, pp. 159-162, 168, 242-243. ISSN/ISBN:978-0-465-01884-0.
|
|
|
|
|
Flam, F (2000). Math formula could help spot tax cheats. The Pittsburg Post-Gazette, 19 April.
|
|
|
|
|
Flayyih, HH (2013). Using Benford Law in Detecting Earnings Management and its Reflection on the audit quality : In application on a sample of listed companies in the Iraq stock Exchange. Master Thesis, College of Administration and Economics, University of Baghdad.
ARA
|
|
|
|
|
Flayyih, HH, Noorullah, AS, Jari, AS and Hasan, AM (2020). Benford Law: A Fraud Detection Tool Under Financial Numbers Game: A Literature Review. Social Science and Humanities Journal 4(5), pp. 1909-1914.
|
|
|
|
|
Flehinger, BJ (1966). On the Probability that a Random Integer has Initial Digit A. American Mathematical Monthly 73(10), pp. 1056-1061. ISSN/ISBN:0002-9890. DOI:10.2307/2314636.
|
|
|
|
|
Flenghi, R and Jourdain, B (2023). Convergence to the uniform distribution of vectors of partial sums modulo one with a common factor. Preprint arXiv:2308.01874 [math.PR]; last accessed August 24, 2023.
|
|
|
|
|
Florack, LMJ (1999). Visual representations embodying spacetime structure. Technical Report, University Utrecht, UU-CS-1999-07.
|
|
|
|
|
Fonseca, PMT da (2016). Digit analysis using Benford's Law: A Bayesian approach. Masters Thesis, ISEG - Instituto Superior de Economia e Gestão, Lisbon School of Economics & Management, Portugal.
|
|
|
|
|
Ford, C (2016). Earthquake data and Benford’s Law. Posted on blog "Statistics you can probably trust" .
|
|
|
|
|
Forgan, D (2013). Benford’s Law – Can you detect fraud by the first digit?. Research the HeadLines website; last accessed Dec 6, 2019.
|
|
|
|
|
Formann, AK (2010). The Newcomb-Benford Law in Its Relation to Some Common Distributions. PLoS ONE 5(5): e10541. DOI:10.1371/journal.pone.0010541.
|
|
|
|
|
Forster, RP (2006). Auditoria contábil em entidades do terceiro setor : uma aplicação da Lei Newcomb-Benford. Universidade de Brasília, Brasília.
POR
|
|
|
|
|
Fox, RF and Hill, TP (2014). Hubble’s Law Implies Benford’s Law for Distances to Stars. Prerprint Physics arXiv; posted on December 4, 2014.
|
|
|
|
|
Francischetti, CE (2007). Aplicação da lei dos números anômalos ou Lei de Newcomb- Benford para o controle das demonstrações financeiras das organizações [Application of the law of anomalous numbers or the Newcomb-Benford Act to control the financial statements of organizations]. Masters thesis, Universidade Metodista de Piracicaba, Brasil.
POR
|
|
|
|
|
Franel, J (1917). A propos des tables de logarithmes. Festschrift der Naturforschenden Gesellschaft in Zürich, Vierteljahrsschrift 62, pp. 286-295.
|
|
|
|
|
Frank, A (2006). Benford's law. Reason-and-Rhyme Blog.
|
|
|
|
|
Freeman, RB (2018). Benford's Law. Lecture 17 notes for Economics 1818 course, Harvard University.
|
|
|
|
|
Freidank, C-C and Kusch, A (2008). Das Benfordsche Gesetz als Instrument zur Aufdeckung von Unregelmäßigkeiten im Rahmen der Jahresabschlussprüfung. Wirtschaftswissenschaftliches Studium, Vol. 37, No. 2, pp. 100-102. ISSN/ISBN:0340-1650.
GER
|
|
|
|
|
Frey, B (2006). Spot Faked Data. Hack #64 in: Statistic Hacks, pp 251-262
O'Reilley Media, Sebastopol, CA. ISSN/ISBN:978-0-596-10164-0.
|
|
|
|
|
Friar, JL, Goldman, T and Pérez-Mercader, J (2016). Ubiquity of Benford’s law and emergence of the reciprocal distribution. Physics Letters A 380(22), pp. 1895–1899. ISSN/ISBN:0375-9601. DOI:10.1016/j.physleta.2016.03.045.
|
|
|
|
|
Friar, JL, Goldman, T and Pérez–Mercader, J (2012). Genome Sizes and the Benford Distribution. PLoS ONE 7(5): e36624. DOI:10.1371/journal.pone.0036624.
|
|
|
|
|
Frick, RA , Liu, H and Steinebach, M (2020). Detecting double compression and splicing using benfords first digit law. ARES '20: Proceedings of the 15th International Conference on Availability, Reliability and SecurityAugust, Article No. 47, pp. 1–9. DOI:10.1145/3407023.3409200.
|
|
|
|
|
Friedberg, SH (1984). The Distribution of First Digits. College Mathematics Journal 15(2), pp. 120-125. ISSN/ISBN:0049-4925. DOI:10.2307/2686516.
|
|
|
|
|
Frieden, BR (1999). F-Information, a Unitless Variant of Fisher Information. Foundations of Physics 29(10), pp. 1521-1541. ISSN/ISBN:0015-9018. DOI:10.1023/A:1018806603833.
|
|
|
|
|
Friedman, E, Kolakaluri, R and Rege, M (2020). Benford’s Law Applied to Precinct Level Election Data. Issues in Information Systems 21(2), pp. 238-247.
|
|
|
|
|
Frost, J (2023). Benford’s Law Explained with Examples. Posted on Statistics by Jim blog; last accessed June 28, 2023.
|
|
|
|
|
Frunza, M-C (2016). Solving Modern Crime in Financial Markets: Analytics and Case Studies. Academic Press, New York, (Chapter 2K) pp. 233-245. DOI:10.1016/B978-0-12-804494-0.00017-6.
|
|
|
|
|
Fu, D, Shi, YQ and Su, W (2007). A generalized Benford’s law for JPEG coefficients and its applications in image forensics. Proceedings of SPIE, Volume 6505, Security, Steganography and Watermarking of Multimedia Contents IX, San Jose, California, January 28 - February 1, 2007, pp. 65051L-65051L-11. DOI:10.1117/12.704723.
|
|
|
|
|
Fu, Q, Fang, Z, Villas-Boas, SB and Judge, G (2014). An Investigation of the Quality of Air Data in Beijing. Unpublished manuscript.
|
|
|
|
|
Fu, Q, Villas-Boas, SB and Judge, G (2019). Does china income FSDs follow Benford? A comparison between Chinese income first significant digit distribution with Benford distribution. China Economic Journal 12(1), pp. 68-76. DOI:10.1080/17538963.2018.1477418.
|
|
|
|
|
Fuchs, A and Letta, G (1984). Sur le problème du premier chiffre décimal. Bollettino dell'Unione Matematica Italiana, VI. Ser., B 3, pp. 451-461.
FRE
|
|
|
|
|
Fuchs, A and Letta, G (1996). Le problème du premier chiffre décimal pour les nombres premiers. The Electronic Journal of Combinatorics 3(2), R25.
FRE
|
|
|
|
|
Fuchs, A and Nanopoulos, P (1985). Mesures invariantes par translation, classes de Dynkin first-digit problem. Advances in Mathematics 55, pp. 24-74. DOI:10.1016/0001-8708(85)90004-0.
FRE
|
|
|
|
|
Furlan, LV (1946). Das Harmoniegesetz der Statistik: Eine Untersuchung ueber die metrische Interdependenz der sozialen Erscheinungen. Basel, Verlag fuer Recht und Gesellschaft AG, xiii:504p. DOI:10.1111/j.1467-6435.1948.tb00591.x.
GER
|
|
|
|
|
Furry, WH and Hurwitz, H (1945). Distribution of numbers and distribution of significant figures. Nature 155(3924), pp. 52-53. DOI:doi:10.1038/155052a0.
|
|
|
|
|