View Complete Reference

Engel, HA and Leuenberger, C (2003)

Benford's law for exponential random variables

Statistics & Probability Letters 63, pp. 361-365.

ISSN/ISBN: 0167-7152 DOI: Not available at this time.



Abstract: Benford’s law assigns the probability log10(1 + 1/d) for finding a number starting with specific significant digit d. We show that exponentially distributed numbers obey this law approximatively, i.e., within bounds of 0.03.


Bibtex:
@article {MR1996184, AUTHOR = {Engel, Hans-Andreas and Leuenberger, Christoph}, TITLE = {Benford's law for exponential random variables}, JOURNAL = {Statist. Probab. Lett.}, FJOURNAL = {Statistics \& Probability Letters}, VOLUME = {63}, YEAR = {2003}, NUMBER = {4}, PAGES = {361--365}, ISSN = {0167-7152}, CODEN = {SPLTDC}, MRCLASS = {60E99 (60C05)}, MRNUMBER = {1996184 (2004d:60050)}, MRREVIEWER = {Ulrich M. Hirth}, DOI = {10.1016/S0167-7152(03)00101-9}, URL = {https://www.sciencedirect.com/science/article/pii/S0167715203001019?via%3Dihub}, }


Reference Type: Journal Article

Subject Area(s): Probability Theory