Berger, A (2015). Most linear flows on ℝ^d are Benford
. Journal of Differential Equations 259(5), pp. 1933–1957. DOI:10.1016/j.jde.2015.03.016.





Berger, A and Eshun, G (2014). A characterization of Benford's law in discretetime linear systems. Journal of Dynamics and Differential Equations, Springer; published online 15 September 2014. ISSN/ISBN:10407294. DOI:10.1007/s108840149393y.





Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 2360. ISSN/ISBN:9783662441398. DOI:10.1007/9783662441404_2.





Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062.





Bhole, G, Shukla, A and Mahesh, TS (2014). Benford distributions in NMR. arXiv:1406.7077 [physics.dataan]; last accessed February 25, 2017.





Bhole, G, Shukla, A and Mahesh, TS (2015). Benford analysis: A useful paradigm for spectroscopic analysis. Chemical Physics Letters 639, pp. 36–40. DOI:10.1016/j.cplett.2015.08.061.





Campos, L, Salvo, AE and FloresMoya, A (2016). Natural taxonomic categories of angiosperms obey Benford's law, but artificial ones do not. Systematics and Biodiversity, in press. ISSN/ISBN:14772000 (Print)/ 1. DOI:10.1080/14772000.2016.1181683.





Cournane, S, Sheehy, N and Cooke, J (2014). The novel application of Benford's second order analysis for monitoring radiation output in interventional radiology. Physica Medica 30(4), pp. 413–418. DOI:10.1016/j.ejmp.2013.11.004.





Shukla, A, Pandey, AK and Pathak, A (2017). Benford’s distribution in extrasolar world: Do the exoplanets follow Benford’s distribution?. Journal of Astrophysics and Astronomy JOAAD1600138, forthcoming.





Wojcik, MR (2013). Notes on scaleinvariance and baseinvariance for Benford's Law. arXiv:1307.3620 [math.PR].





Wojcik, MR (2014). A characterization of Benford’s law through generalized scaleinvariance. Mathematical Social Sciences, Volume 71, September 2014, pp. 1–5. DOI:10.1016/j.mathsocsci.2014.03.006.




