Cross Reference Up

Schatte, P (1988). On the uniform distribution of certain sequences and Benford’s law. Math. Nachr. 136, 271-273.

This work is cited by the following items of the Benford Online Bibliography:

Note that this list may be incomplete, and is currently being updated. Please check again at a later date.


Berger, A (2005). Multi-dimensional dynamical systems and Benford's law. Discrete and Continuous Dynamical Systems 13(1), 219-237. ISSN/ISBN:1078-0947. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Eshun, G (2014). A characterization of Benford's law in discrete-time linear systems. Journal of Dynamics and Differential Equations, Springer; published online 15 September 2014. ISSN/ISBN:1040-7294. DOI:10.1007/s10884-014-9393-y. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Eshun, G (2014). Benford solutions of linear difference equations. Theory and Applications of Difference Equations and Discrete Dynamical Systems, Springer Proceedings in Mathematics & Statistics Volume 102, pp. 23-60. ISSN/ISBN:978-3-662-44139-8. DOI:10.1007/978-3-662-44140-4_2. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A and Hill, TP (2015). An Introduction to Benford's Law. Princeton University Press: Princeton, NJ. ISSN/ISBN:9780691163062. View Complete Reference Online information Works that this work references Works that reference this work
Berger, A, Hill, TP, Kaynar, B and Ridder, A (2011). Finite-state Markov Chains Obey Benford's Law. SIAM Journal of Matrix Analysis and Applications 32(3), 665-684. View Complete Reference Online information Works that this work references Works that reference this work
Drmota, M and Tichy, RF (1997). Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651. View Complete Reference Online information Works that this work references Works that reference this work
Freidank, C-C and Kusch, A (2008). Das Benfordsche Gesetz als Instrument zur Aufdeckung von Unregelmäßigkeiten im Rahmen der Jahresabschlussprüfung. Wirtschaftswissenschaftliches Studium, Vol. 37, No. 2, pp. 100-102. ISSN/ISBN:0340-1650. GER View Complete Reference Online information Works that this work references Works that reference this work
Kanemitsu, S, Nagasaka, K, Rauzy, G and Shiue, JS (1988). On Benford’s law: the first digit problem. Lecture Notes in Mathematics 1299, pp. 158-169 (eds. Watanabe, S, and Prokhorov, YV). ISSN/ISBN:978-3-540-18814-8. DOI:10.1007/BFb0078471. View Complete Reference Online information Works that this work references Works that reference this work
Mochty, L (2002). Die Aufdeckung von Manipulationen im Rechnungswesen - Was leistet das Benford's Law?. Die Wirtschaftsprüfung 14, pp. 725-736. GER View Complete Reference Online information Works that this work references Works that reference this work
Möller, M (2009). Measuring the Quality of Auditing Services with the Help of Benford’s Law - An Empirical Analysis and Discussion of this Methodical Approach. E-print available at: http://ssrn.com/abstract=1529307; last accessed June 23, 2014. DOI:10.2139/ssrn.1529307. View Complete Reference Online information Works that this work references Works that reference this work
Nagasaka, K, Kanemitsu, S and Shiue, JS (1990). Benford’s law: The logarithmic law of first digit. pp 361-391 in: Győry, K, Halász, G. (eds.) Number theory. Vol. I. Elementary and analytic, Proc. Conf., Budapest/Hung. 1987, Colloq. Math. Soc. János Bolyai 51. View Complete Reference No online information available Works that this work references Works that reference this work
Schatte, P (1988). On mantissa distributions in computing and Benford’s law. Journal of Information Processing and Cybernetics EIK 24(9), 443-455. ISSN/ISBN:0863-0593. View Complete Reference Online information Works that this work references Works that reference this work
Tichy, RF (1987). Statistische Resultate über computergerechte Darstellungen von Zahlen. Anzeiger der Österreichischen Akademie der Wissenschaften. Mathematisch- Naturwissenschaftliche Klasse 124, pp.1-8. GER View Complete Reference No online information available Works that this work references Works that reference this work